Drug Discovery 2021 After the Storm: Re-connect, Re-invent, Re-imagine

The challenges of cell models: Novel approaches and tools for basic research and drug discovery

Wed20 Oct10:50am(60 mins)
Where:
Room 11C - Workshop
Session:
Speaker:

Abstract

Chaired by Dr Zoe Nilsson, Global Product Marketing Manager, bit.bio zoe.nilsson@bit.bio Speakers 1. Luckshman Jeremy Anton Talk title: high throughput screening using stem cell derived neurons Take home points: i. Drug discovery for neurodegenerative diseases are often limited by the inability to source cell lines that correctly exhibit disease phenotype in an endogenous manner ii. Stem cells are able to provide disease relevant models for testing that are scalable and can be differentiated into the appropriate tissue type iii. Direct reprogramming of stem cells may allow for faster, more efficient differentiation and shows increased robustness in HTS assays compared to traditional differentiation techniques 2.Michael Duchen Talk title: Using iPSC-derived cells to explore mitochondrial disease Take home points: i. Diseases caused by mutations of mitochondrial DNA (mtDNA) are devastating multisystem disorders with highly variable presentations. They are very poorly understood and no disease modifying treatments are available. ii. Because we can’t manipulate the mitochondrial genome, we can’t readily generate animal or cell based models and so these diseases have been very hard to study. iii. We are using iPSc’s derived from patient fibroblasts, differentiated into neurons and muscle to study the pathophysiology in the cells most severely affected by the disease, with the ultimate goal of identifying novel therapeutic targets for these otherwise intractable diseases. Use of stem cell technology has the potential to transform our understanding of these hitherto obscure and difficult diseases. 3.Hagan Bayley Talk Title: Printing synthetic, living and hybrid materials Take home points from the presentation i. By 3D printing, we have assembled functional synthetic tissues comprising patterned networks of thousands of aqueous droplets joined by lipid bilayers ii. A related printing technology has been used to pattern a variety of living cells, providing structures that include small tumours and neural tissues iii. Millimeter-scale printed structures can be used as building blocks for cm-scale structures ranging from synthetic axons to hybrid constructs containing both synthetic and living cells

Hosted By

ELRIG

The European Laboratory Research & Innovation Group Our Vision : To provide outstanding, leading edge knowledge to the life sciences community on an open access basis

Get the App

Get this event information on your mobile by
going to the Apple or Google Store and search for 'myEventflo'
iPhone App
Android App
www.myeventflo.com/2374