Drug Discovery 2021 After the Storm: Re-connect, Re-invent, Re-imagine

Studies of the membrane-bound pyrophosphatase as a potential drug target against protist parasites

Tue19 Oct02:45pm(30 mins)
Where:
Room 3A
Speaker:

Abstract

Protist parasite diseases, such as malaria, toxoplasmosis, and leishmaniasis, cause tremendous problems worldwide and have enormous health, social and economic impacts. All these parasites have membrane-bound pyrophosphatases (mPPases), enzymes that couple the hydrolysis or synthesis of pyrophosphate to proton and/or sodium active transport across membranes. mPPases are also important for the growth of protist parasites causing disease. Because of their absence in animals and humans, the enzyme represents a potential candidate for rational drug design against those parasites. Here we present the development of mPPase inhibitors and their activities against bacterial (Thermotoga maritima) and protist (Plasmodium falciparum) mPPases to low micromolar inhibitory activities. Further testing of the promising inhibitors in the P. falciparum survival assay in erythrocytes showed that some compounds were able to inhibit the parasite growth; with the best one, mPP-0293, have the IC50 of 3.6 µM. We also solved the complex structure of the bacterial mPPase from T. maritima with ATC, the first non-phosphorous mPPase inhibitor, by X-ray crystallography. The compound binds as a dimer to a hitherto-unknown allosteric site near the enzyme exit channel, creating a hydrophobic clamp that prevents the hydrophobic gate from opening. Altogether, the complex structure opens a new route to drug discovery of parasitic diseases by targeting mPPase at its allosteric binding site. Keywords: membrane-bound pyrophosphatase, X-ray crystallography, inhibitor, drug design Reference: 1. Shah, N.R., Vidilaseris, K., Xhaard, H. and Goldman, A., 2016. Integral membrane pyrophosphatases: a novel drug target for human pathogens?. AIMS Biophysics, 3(1), pp.171-194. 2. Vidilaseris, K., Kiriazis, A., Turku, A., Khattab, A., Johansson, N.G., Leino, T.O., Kiuru, P.S., af Gennäs, G.B., Meri, S., Yli-Kauhaluoma, J. and Xhaard, H., 2019. Asymmetry in catalysis by Thermotoga maritima membrane-bound pyrophosphatase demonstrated by a nonphosphorus allosteric inhibitor. Science advances, 5(5), p.eaav7574. 3. Johansson, N.G., Turku, A., Vidilaseris, K., Dreano, L., Khattab, A., Ayuso Pérez, D., Wilkinson, A., Zhang, Y., Tamminen, M., Grazhdankin, E. and Kiriazis, A., 2020. Discovery of Membrane-Bound Pyrophosphatase Inhibitors Derived from an Isoxazole Fragment. ACS medicinal chemistry letters, 11(4), pp.605-610.

Hosted By

ELRIG

The European Laboratory Research & Innovation Group Our Vision : To provide outstanding, leading edge knowledge to the life sciences community on an open access basis

Get the App

Get this event information on your mobile by
going to the Apple or Google Store and search for 'myEventflo'
iPhone App
Android App
www.myeventflo.com/2374