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Clonal strains/subspecies have arisen multiple times independently Thgl has a highly conserved and less complex minicircle population

from a Trypanosoma brucei brucei (Tbb) common ancestor
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Background and Introduction Thg type Il . w324 100
Mitochondrial DNA in kinetoplastids (kinetoplast DNA or kDNA) is unique in structure I h=12 S 80 o
and gene content. KDNA comprises of maxicircles and minicircles, both necessary for gene o % . s i 2 60 -
expression (Fig. 1). During cell division, imperfect replication and segregation of kDNA result Thg type | x=123 | = °
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in fluctuation in the minicircle populations. Sexual reproduction reshuffles minicircles S
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among insect-transmissible isolates and rescues underrepresented minicircles (refl). I T. b. brucei - x=300 20 1
However, some strains have evolved from obligatory tsetse transmission to direct n=26 0 - ==
Itransmission between.mammalf and become t.setse independen.t, suchasT. b. equfperdum T. brucei ] - x=343 Thg t\I/pe 1 Other T Ibrucei ssp
(Tbeq) and T. b. evansi (Tbev) (Fig. 2). A causative agent of chronic HAT, T. b. gambiense type unclassified T T o TR v n=111 n=113
1 (Thg 1), has also abandoned sexual reproduction, although still transmitted by tsetse (ref n=56 (A) Minicircle class counts (B)
2). The lack of sexual reproduction and recombination appears to have led to substantial D e e T T
Ireduction of minicircle diversity. I Fig. 4. The conservation and uniqueness support the hypothesis that Thgl/ is derived
To examine the impact of different lifecycles on kDNA complexity , kDNA assembly was Ifrom a single progenitor that emerged within the last 10,000 years (ref 2). I
performed on 262 T. brucei isolates from various geographic areas and representing all I (A) The mean network complexity for Thgl is 123 classes per network. significantly lower than other T.
subspecies using KOMICS (ref 2). brucei subspecies that include sexual reproduction in their lifecycles (<= 300 unique minicircle per
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network). (B) From 224 tsetse-transmissible isolates we assembled 5668 distinct minicircle classes. I
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Collectively, Thgl contributes 195 classes. Most of these minicircles are shared widely among Thg/
isolates and underrepresented in other T. brucei isolates.
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type A \ I @ ® Fig. 5. Surprisingly, gRNA coverage for A6 and RPS12 mRNAs in Theq type OVI strains
N SO A Iis complete or nearly complete. Coverage for insect-stage specific COX3 and ND3 I
@ ® MRNAs is incomplete in Theq OVI and Thgl isolate LiTat-1-3.

This suggests that: (i) contrary to long-standing assumptions, Theq OVI is either still kKDNA-dependent
Ior has become independent only relatively recently. (ii) Some Tbhg1l strains can no longer survive in or
be transmitted by tsetse flies. LiTat-1-3 has undergone prolonged culturing. EATRO1125 and 340AT: I
Ifse-transmissible Tbb and Thg1.
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T. b. gambiense type 1 (Tbgl) Putative T. brucei ancestors
~120 minicircle classes ~390 minicircle classes

T. b. equiperdum type OVI
~45 minicircle classes
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Only a fraction of 7Thg1 cells within each clonal population still retain the

ability to survive in the tsetse vector
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leads to various degrees of kDNA reduction in the asexual subspecies. Tt O
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The kDNA of three groups of Thev and Theq each contains a single minicircle class diagnostic I 2 70- t
of each group (type A, B, C). Theq type OVI and Thgl have streamlined editing capacity, while 0 |
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ﬁ:ig. 3. Streamlined editing capacity in clonal T. brucei ssp indicates Fig. 6. Populations of the strictly clonal Thgl have nearly complete, but significantly

Icumulative and irreversible loss of minicircle diversity I lower, editing sites coverage for insect-stage specific gene mRNAs compared to I
The pleomorphic Tbb strain EATRO1125 has highly redundant gRNA coverage of the mRNA other T. brucei subspecies capable of sexual reproduction I
A6 editing sites. A very similar scenario is observed for the RPS12 mRNA (not shown). I gRNA coverages for A6 and RPS12 do no differ significantly between subspecies. In contrast, coverage

_(8RNAs: blue, anchors: yellow, U-deletions: red, U-insertions: purple) for COX3 and ND3 mRNAEs is significantly lower, suggesting relative loss of the corresponding I

References minicircles within the population. This may explain the variable tsetse infectivity reported for Thg1l
field isolates (ref 4). ]
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