

L-threonine 3-dehydrogenase protects Trypanosoma cruzi from genetic damage and oxidative stress

Paola García-Huertas¹, Ana María Mejía-Jaramillo¹, Carlos Renato Machado², <u>Omar Triana-Chávez^{1*}</u>

¹Biología y Control de Enfermedades Infecciosas-BCEI, Universidad de Antioquia, Medellín, Colombia. ²Departamento de Bioquímica e Inmulogia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.

INTRODUCTION

Benznidazole and nifurtimox are the front-line drugs used to treat *Trypanosoma cruzi* infections. The resistance of *T. cruzi* to these drugs has been reported as one of the leading causes of treatment failure against Chagas disease. L-threonine 3-dehydrogenase (TDH) plays an essential role in L-threonine catabolism. It catalyzes the NAD(P)+-dependent oxidation of L-threonine to 2-amino-3-oxobutyrate, a precursor in glycine and acetyl-coenzyme A production. Recently, TDH was found overexpressed in benznidazole-resistant parasites and was classified as exclusive in resistant parasites. Here, we characterized the TDH protein by overexpressing the gene in *T. cruzi* epimastigotes and studied different genetic and biological features.

METHODOLOGY

TDH protects against DNA alkylating agents and Gamma irradiation

CONCLUSION

We propose that TDH has a protective effect on oxidative stress and genetic damage caused by Bz, as well as on the impact of compounds such as H₂O₂, MMS, and gamma radiation. Likewise, we support that the Bz acts through the induction of oxidative stress and genetic damage in *T. cruzi*.