
1. Background
• Leishmania mexicana is a single celled protozoan parasitic organism that

causes Cutaneous Leishmaniasis (CL). The World Health Organisation

estimates CL causes 30,000 new cases per year [1].

• Study of essential genes is challenging as L. mexicana lack RNAi machinery[2]

and there are limited inducible gene-deletion options.

• CRISPR-Cas9 system allows precise double-stranded DNA (dsDNA) breaks at

specific sequences, directed by a single-guide RNA (sgRNA)[3,4].

• Precision editing is the process of making small scale genetic mutations

without the inclusion of selection markers.

• Precision editing can be used to investigate the function and regulation of

essential protein-coding genes, with a reduced chance of generating a lethal

phenotype. Additionally, it can be used to investigate the role of specific

amino acids of a protein in vivo.

4. Kinetochore Phosphosite Mutants 
Have No Apparent Cell Cycle Defects
The kinetochore is an essential protein complex that connects microtubules to

DNA during chromosomal segregation in mitosis[5]. The kinetochore is highly

divergent in kinetoplastids.

KKT2, KKT4 and KKT7 mutants were assessed for growth rate changes by Alamar

blue assay and cell cycle defects by propidium iodide flow cytometry.

2. Precision Editing Methodology
160 bp repair templates were designed as below. Each template had 50 bp

homology arms and two sgRNA targeting sites. The PAM and sgRNA-recognition

sequences were synonymously recoded to prevent subsequent cas9 cleavage and

to aid with screening.

Repair templates were generated through a PCR-based approach, using two

oligonucleotides that anneal to form a 160 bp dsDNA template[4].

L. mexicana cells expressing T7 RNA polymerase and cas9[4] were transfected with

the repair template and two sgRNAs. Up to 24 clones from each transfection were

screened by PCR to detect integration of the repair template. Sanger sequencing

was used to confirm the genotype of mutant PCR-positive clones.

5. Development of a Repair Template
Design Tool using Python
A design tool for kinetoplastids has been developed to replicate the recoding

process used to create the repair templates. The tool is accessible to non-

programmers. It offers rapid generation of a recoded repair sequence, as well as

designing primers for both repair template production and screening of clones.

The tool offers several methods of recoding for customisability.

3. 29% of Clones Screened Integrated
the Repair Template

6. Summary
• The precision editing method presented here is efficient at generating

homozygous mutants across a range of different genes. It is flexible,

affordable, and does not require any laborious plasmid cloning.

• The creation of a computerised design tool allows rapid design, with a

consistent recoding strategy, to enable standardisation.

• There was no apparent growth defects nor cell cycle defects seen in the

kinetochore phosphosite mutants generated.

Future Plans
• To develop the precision editing method further to enable higher-through put

screening approaches.

• To add more features to the design tool to enable CRISPR guide design, batch

processing of target sites and web-based access.
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Table 1. Target sites and mutations.[5, 6]
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