1.

Background

Leishmania mexicana is a single celled protozoan parasitic organism that
causes Cutaneous Leishmaniasis

(CL).

The World Health Organisation
estimates CL causes 30,000 new cases per year 1,

Study of essential genes is challenging as L. mexicana lack RNAi machinery!]
and there are limited inducible gene-deletion options.

CRISPR-Cas9 system allows precise double-stranded DNA (dsDNA) breaks at
specific sequences, directed by a single-guide RNA (sgRNA)[3-4],

Precision editing is the process of making small scale genetic mutations
without the inclusion of selection markers.

Precision editing can be used to investigate the function and regulation of
essential protein-coding genes, with a reduced chance of generating a lethal
phenotype. Additionally, it can be used to investigate the role of specific
amino acids of a protein in vivo.

2. Precision Editing Methodology

160 bp repair templates were designec

as below. Each template had 50 bp

homology arms and two sgRNA targeting sites. The PAM and sgRNA-recognition
sequences were synonymously recoded to prevent subsequent cas9 cleavage and
to aid with screening.
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Repair templates were generated through a PCR-based approach, using two

oligonucleotides that anneal to form a 160 bp dsDNA templatel4l.
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L. mexicana cells expressing T7 RNA polymerase and cas9l4! were transfected with
the repair template and two sgRNAs. Up to 24 clones from each transfection were
screened by PCR to detect integration of the repair template. Sanger sequencing

was used to confirm the genotype of mutant PCR-positive clones.
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4. Kinetochore Phosphosite Mutants
Have No Apparent Cell Cycle Detects

The kinetochore is an essential protein complex that connects microtubules to
DNA during chromosomal segregation in mitosisl’l. The kinetochore is highly
divergent in kinetoplastids.

KKT2, KKT4 and KKT/7 mutants were assessed for growth rate changes by Alamar
blue assay and cell cycle defects by propidium iodide flow cytometry.
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. Development of a Repair Template

Design Tool using Python

A design tool for kinetoplastids has been developed to replicate the recoding
process used to create the repair templates. The tool is accessible to non-
programmers. It offers rapid generation of a recoded repair sequence, as well as
designing primers for both repair template production and screening of clones.
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The tool offers several methods of recoding for customisability.
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6. Summary

« The precision editing method presented here is efficient at generating
homozygous mutants across a range of different genes. It is flexible,
affordable, and does not require any laborious plasmid cloning.

« The creation of a computerised design tool allows rapid design, with a
consistent recoding strategy, to enable standardisation.

« There was no apparent growth defects nor cell cycle defects seen in the
kinetochore phosphosite mutants generated.

Future Plans

« To develop the precision editing method further to enable higher-through put
screening approaches.

 To add more features to the design tool to enable CRISPR guide design, batch
processing of target sites and web-based access.
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