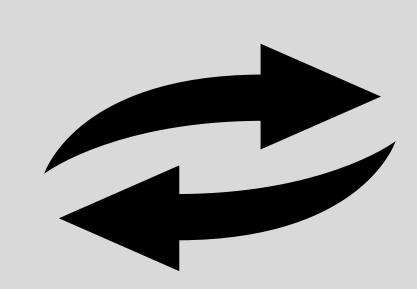
Warming effects on the lifecycles and ecological impacts

of two invasive parasitic copepods infecting native blue mussels

Rosa Jolma^{12*}, Mathias Wegner³, Ana Born-Torrijos¹, Hans Heesterbeek², Anieke van Leeuwen¹, David Thieltges¹

¹ Royal Netherlands Institute for Sea Research (NIOZ), 't Horntje, Texel, The Netherlands ² Utrecht University, Utrecht, The Netherlands


Figure 1. Temperature effects on the two parasites and blue mussel hosts					
	10°C	14°C	18°C	22°C	26°C
Parasite growth					
Parasite success					
Host growth					
Host condition					1
Host survival					
Mytilicola intestinalis					

Invasive species, climate change and the Wadden Sea

- Temperature increase and invasive species can change existing multi-species communities
 - Their combined effect on host-parasite dynamics remains understudied
 - Environmental change can modulate the success and impact of invasive parasites and the interaction between native and invasive host species¹
- In the Wadden Sea
 - 1-2 new invasive species arrive every year and the water temperature is projected to increase by 1-5 °C by the end of the century²
 - Our model system consists of blue mussel (Mytilus edulis) hosts and two species of invasive parasitic copepods (Mytilicola intestinalis and Mytilicola orientalis) with simple lifecycles in the Wadden Sea

Lifecycle of both Mytilicola spp.

Aims: To determine the impact of temperature on:

- The development speed and success of the free-living and parasitic life stages of two invasive parasitic copepods
- The mussel hosts with and without copepod infections

Experiments and results

- Temperature-controlled laboratory experiments:
 - With free-living parasite life stages and by infecting mussels for 8-20 weeks (mussel tanks in the picture below)
 - Three parasite success measures: egg development, host entry, infection. Also parasite growth inside hosts was measured over time
 - Host survival, growth, condition and reproductive activity compared between infected and control mussels

- Main results in Figure 1
 - Heatwave temperatures (26 °C) were harmful both for mussels and M. intestinalis
 - M. intestinalis had a negative effect on mussel condition that was most pronounced at the lowest temperatures
 - M. orientalis had a negative effect on mussel growth uniformly across temperatures
 - Mussel reproduction occurred only at low temperatures (10-18 °C) and was not affected by infection
 - Increase in temperature is likely to result in more parasite life cycles per year that can lead to an increase in infection pressure
- Data from the experiment will be combined with pre-exiting data on parasite interactions³ and field data to inform eco-epidemiological model building

References

- 1. Roberts, M. G. & Heesterbeek, J. a. P. Infection dynamics in ecosystems: on the interaction between red and grey squirrels, pox virus, pine martens and trees. J. R. Soc. Interface 18, 20210551 (2021).
- 2. Kloepper S., et al. (2022) Wadden Sea Quality Status Report. Common Wadden Sea Secretariat, Wilhelmshaven, Germany. qsr.waddensea-worldheritage.org
- 3. Feis, M. E. et al. Invading the Occupied Niche: How a Parasitic Copepod of Introduced Oysters Can Expel a Congener From Native Mussels. Front. Mar. Sci. 9, (2022).