## The N-glycosylation profile of proteins excreted-secreted by *Fasciola hepatica* newly excysted juveniles (NEJs)

## Carolina De Marco Verissimo, Krystyna Cwiklinski, John P. Dalton

Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, NUI Galway, Ireland.

Fasciola hepatica newly excysted juveniles (NEJs) excrete-secrete (ES) a complex mixture of ~100 different proteins, which come into direct contact with their host's tissues and cells and aid the parasite to infect and survive within the host. Despite the fact that glycosylation is one of the most common posttranslational modifications associated with secreted proteins, there is a significant dearth of knowledge regarding the glycosylation of those proteins found in the NEJs ES.

## Aim

To characterize the N-glycosylation profile of individual proteins excreted-secreted by NEJs.

| NEJs ES                                                  |           |                   |                                    |               |
|----------------------------------------------------------|-----------|-------------------|------------------------------------|---------------|
| N-glycoproteins                                          | MW (kDa)  | Signal<br>peptide | N-glycosylation<br>sites predicted | Occupancy (%) |
| 31                                                       | 17 to 206 | 17                | 01 - 22                            | 4.5 to 100    |
| Cubilin                                                  | 35.1      | Yes               | 6                                  | 83            |
| Cathepsin L4 (FhCL4_2)                                   | 30.0      | No                | 1                                  | 100           |
| Cathepsin B3 (FhCB3                                      | 62.7      | Yes               | 6                                  | 75            |
| Cathepsin B like                                         | 29.3      | Yes               | 2                                  | 100           |
| Cathepsin B11 (FhCB11)                                   | 24.4      | No                | 1                                  | 100           |
| Cathepsin B2 (FhCB2)                                     | 52.6      | Yes               | 2                                  | 100           |
| Cathepsin L-like                                         | 40.6      | Yes               | 1                                  | 100           |
| Lysosomal alpha-<br>glucosidase                          | 70.0      | No                | 5                                  | 60            |
| Tetraspanin-CD63 receptor                                | 33.3      | No                | 3                                  | 67            |
| Peptidase inhibitor 16                                   | 23.9      | Yes               | 1                                  | 100           |
| Peptidylglycine alpha-<br>hydroxylating<br>monooxygenase | 32.0      | No                | 2                                  | 50            |







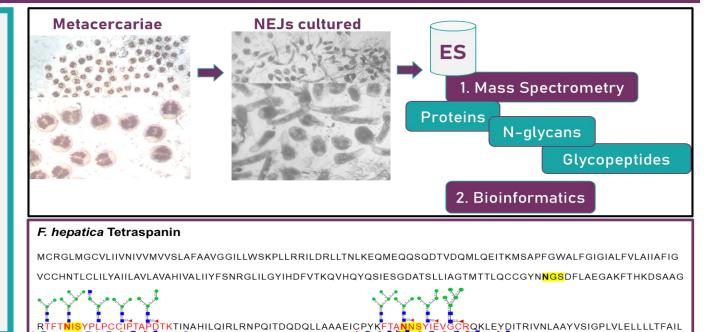
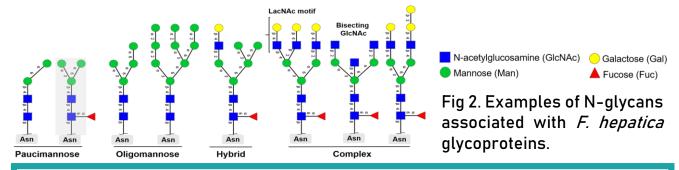




Fig 1. Heterogenicity of N-glycosylation siters in *F. hepatica* glycoproteins.



Predicted N-glycosylation sites (NetNGlyc 1.0 Server)

## Conclusions

- The liver flukes synthesize and secrete proteins with variable glycosylation patterns.
- The composition of the ES is highly heterogeneous and much more complex than initially anticipated.
- Our data provide the foundation for the discovery of biomarkers for diagnostics and vaccine candidates to control fasciolosis.